On maximal and minimal hypersurfaces of Fermat type

نویسندگان

چکیده

Let F q \mathbb {F}_q be a finite field with alttext="q equals p Superscript n"> = p n encoding="application/x-tex">q=p^n elements. In this paper, we study the number of -rational points on affine hypersurface alttext="script X"> class="MJX-tex-caligraphic" mathvariant="script">X encoding="application/x-tex">\mathcal X given by alttext="a 1 x d Baseline plus midline-horizontal-ellipsis s Super b"> a 1 x d + ⋯ s b encoding="application/x-tex">a_1 x_1^{d_1}+\dots +a_s x_s^{d_s}=b , where alttext="b element-of double-struck q asterisk"> ∈<!-- ∈ <mml:mo>∗<!-- ∗ encoding="application/x-tex">b\in \mathbb {F}_q^* . A classic well-known result Weil yields bound for such points. This paper presents necessary and sufficient conditions maximality minimality respect to Weil’s bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolic Hypersurfaces in P of Fermat-waring Type

In this note we show that there are algebraic families of hyperbolic, FermatWaring type hypersurfaces in P of degree 4(n − 1), for all dimensions n ≥ 2. Moreover, there are hyperbolic Fermat-Waring hypersurfaces in P of degree 4n − 2n + 1 possessing complete hyperbolic, hyperbolically embedded complements. Many examples have been given of hyperbolic hypersurfaces in P (e.g., see [ShZa] and the ...

متن کامل

The Zeta-function of Monomial Deformations of Fermat Hypersurfaces

This paper intends to give a mathematical explanation for results on the zeta-function of some families of varieties recently obtained in the context of Mirror Symmetry [4], [9]. In doing so, we obtain concrete and explicit examples for some results recently used in algorithms to count points on smooth hypersurfaces in Pn. In particular, we extend the monomial-motive correspondence of Kadir and...

متن کامل

HYPERBOLIC HYPERSURFACES IN P n OF FERMAT - WARING TYPE Bernard SHIFFMAN

In this note we show that there are algebraic families of hyperbolic, Fermat-Waring type hypersurfaces in P of degree 4(n− 1)2, for all dimensions n 2. Moreover, there are hyperbolic Fermat-Waring hypersurfaces in P of degree 4n2−2n +1 possessing complete hyperbolic, hyperbolically embedded complements. Many examples have been given of hyperbolic hypersurfaces in P3 (e.g., see [ShZa] and the li...

متن کامل

Systolic Inequalities and Minimal Hypersurfaces

We give a short proof of the systolic inequality for the n-dimensional torus. The proof uses minimal hypersurfaces. It is based on the Schoen-Yau proof that an n-dimensional torus admits no metric of positive scalar curvature. In this paper, we give a short new proof of the systolic inequality for the ndimensional torus. Theorem 1. Let (T , g) be a Riemannian metric on the n-dimensional torus. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2023

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/16129